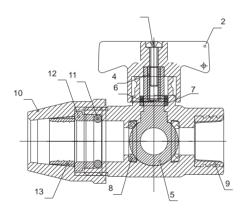
Batsur Colombia

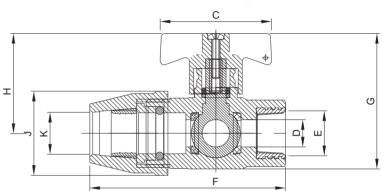
FABRICACIÓN Y COMERCIALIZACIÓN DE COMPONENTES HIDRÁULICOS PARA AGUA POTABLE


VÁLVULA ESFERA PN16 PVC H 1/2"-PE DN16/20 CON ACCIONAMIENTO MANUAL, SISTEMA ANTIFRAUDE Y MÍNIMO VITAL

Los materiales utilizados para la construcción de válvulas en PVC, garantizan una gran durabilidad, por sus características, estas válvulas, pueden tener una vida útil de más de 60 años de funcionamiento y se emplea extensivamente donde la higiene es una prioridad.

Cumple con la norma ASTM-D2467.

CARACTERÍSTICAS DEL POLICLORURO DE VINILO


- Ausencia de corrosión. El policloruro de vinilo (PVC) resiste cualquier tipo de dureza del agua y soporta incluso sustancias químicas con un valor de PH entre 1 y 14. Alta resistencia por tanto a las sustancias ácidas y alcalinas dentro de un gran campo de concentración y temperatura.
- Dispersión térmica y condensación limitada. El PVC como todas las materias plásticas, es un mal conductor de calor, y por tanto, un excelente aislante térmico.
- El PVC posee una excelente resistencia al choque en pruebas realizadas a diferentes temperaturas 0° C a 20° C con energía de impacto de 50J, han dado resultados extraordinarios (1J=10Kg/cm).
- Resistencia a la abrasión. La buena resistencia a la abrasión del PVC, admite altas velocidades del agua sin problemas de erosión.
- Material no tóxico. El PVC utilizado para la producción de válvulas es completamente atóxico y responde a las normas higiénico-sanitarias vigentes en Latingamérica.

CARACTERÍSTICAS DE CONSTRUCCIÓN

- 1.- Cuerpo exterior PVC de alta resistencia.
- 2.- Maneta PVC.
- 3.- Tornillo acero inox. AISI 304.
- 4.- Tuerca roscada latón DZR.
- 5.- Esfera POLIACETAL norma UNE-EN 1452.
- **6.- Junta** de cierre PTF puro.
- 7.- O'ring de NBR shore 70.
- 8.- Junta de estanqueidad PTF puro.
- 9.- Insertos rocados latón DZR.
- 10.- Acople de conexión P.E. Ø ext. 20.
- 11.- O'ring de NBR shore 70.
- **12.- Casquillo** de cierre P.E.
- 13.- Anillo de apriete P.E.

D	IMENSIONES	5
۵f	DVC10005	

C	57 mm
D	DN15
E	1/2 "
F	117,85 mm
G	69,50 mm
Н	51,15 mm
J	41,10 mm
K	21,50 mm

PROPIEDADES TÉRMICAS

Características	Unidad	Valor
Caracteristicas	de medida	obtenido
Calor específico	(J K-1 kg-1)	1000-1500
Coeficiente de expansión térmica	(x10-6 K1)	75-100
Conductividad térmica a 23°C	(W m-1 K-)	0,12-0,25
Temperatura máxima de utilización	(C)	30
Temperatura mínima de utilización	(C)	5
Coeficiente de dilatación	3	
Densidad	Kg/dm	1,37 a 1,42
Tensión de rotura a tracción	Kg/cm²	> 500

PROPIEDADES FÍSICAS

	Peso específico	gr/cm a 25°C	1,36-1,40	
	Resistencia dieléctrica	Kw/mm	20	
	Conductividad térmica	Cal x cm /(cm x s x °C)	35 x 10-5	
	Tensión de diseño	kg/cm ²	100	
	Resistencia a la tracción	kg/cm ²	450 a 550	
	Resistencia a la compresión	kg/cm ²	610	
	Módulo de elasticidad	kg/cm ²	30.000	
Resistencia al aplastamiento		Hasta 0,4 veces el Ø		
		sir	n fisuras ni roturas	
	Resistencia Química			
	Elongación hasta la rotura	%	15	
	Dureza de Shore		- 20 000	

Módulo de elasticidad a 20°C

Tensión de rotura a tracción

> 28.000

> 500

ka/cm